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Abstract. Making use of the Bogoliubov inequality, a necessary condition for spontaneous 
local magnetisation is derived for a d-dimensional classical planar model with exchange 
interactions of arbitrary distribution and range except for systems with infinite energies 
of elementary excitations. For ferromagnetic systems with long-range interaction Y-*-=, 
it gives the new result that the ferromagnetic phase is ruled out for d c U with 2 > U  > 0. 
For spin glass systems of the planar model the condition is y > 1 for the density of spin 
wave states with N ( E )  - E Y  for small E. 

1. Introduction 

Recently random spin systems have attracted much interest. Especially in spin glass 
systems that have strong competing interactions, there has been much discussion 
whether they undergo a phase transition with spins frozen at low temperatures in two 
and three dimensions (for example, see Morgenstern and Binder (1980) and references 
therein). The Bogoliubov inequality is quite useful to decide whether or not in some 
kinds of spin systems the phase transition occurs, and has been used by Mermin and 
Wagner (1966), and Mermin (1967). However, they confined themselves to the 
ferromagnetic and antiferromagnetic phase with short-range interactions. By making 
use of a generalised Bogoliubov inequality, recently Vuillermot (1977) made a rigorous 
treatment to get the absence of ordering in a class of one- and two-dimensional 
quenched random systems including spin glasses. His result is applicable to classical 
and quantum spin systems with three spin components, though interactions are limited 
to being of finite range. Schuster (1980) extended the Bogoliubov inequality to the 
replica spin glass Hamiltonian and showed vanishing of the Edwards-Anderson order 
parameter below four dimensions in XY and Heisenberg spin glasses with nearest- 
neighbour interactions. His treatment seems still to involve the problem of the 
instability of solutions that appears below the freezing temperature (de Almeida and 
Thouless 1978, Pytte and Rudnick 1979). 

In this paper we investigate, making use of the Bogoliubov inequality, a condition 
necessary for the existence of a generalised ordered state at non-zero temperatures 
in classical planar models in which pair spin interactions can have any distribution 
and any distance dependences as long as the elementary excitations have finite energies. 
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The generalised ordered state is defined here to be that in which local magnetisations 
exist spontaneously. The condition applies to spin glasses as well as ferromagnetic 
systems with long-range interactions. It is stated as a condition restricted to the 
elementary excitation (i.e. spin wave) density of states, which enables us to use this 
quantity (which may be obtained experimentally or theoretically) to determine whether 
a generalised ordered state exists or not. Therefore, this condition is regarded as one 
against the instability of a frozen state due to spin waves. In spin glasses where there 
are a large number of degenerate ground states and metastable states, there may exist 
other mechanisms to make a frozen state collapse. Therefore, there may be a stronger 
condition than that to be obtained here. In pure systems, one can theoretically obtain 
the property of spin waves at low temperatures so that the problem can be solved 
directly, as will be seen later in ferromagnetic systems with a general type of interaction. 

2. Theory 

Let us express the Hamiltonian of a classical planar model in an arbitrary dimension. 
In the ground state or one of the degenerate ground states, each spin is assumed to 
be oriented with angle Bi at the ith site in a certain fixed plane common to all the 
spins. Denoting the deviation from 19, by 4i we then have 

where h is the strength of an external field in the same direction as the spins. The 
angles {e,} are determined by C JI, sin(8, - 0,) = 0. 

Let us consider the elementary excitation which can be obtained by the harmonic 
approximations, that is, the spin waves, since the present method treats the stability 
of the system against the spin waves. Employing the harmonic approximation and 
neglecting the constant term, we obtain 

GJ I 

where J:,  = JIJ cos(@, - 6,) .  This problem is solved formally by diagonalising the matrix 
A,, = SI, X k  J : k  - J : ,  : 

1 Aijaj (A  1 = (A  1. (3) 
f 

Here E,, is the eigenvalue of mode A and a , ( h )  is the normalised eigenfunction at site 
i. Introducing the spin variable dA = C, a , ( A ) 4 ,  we then have, for (21, 20 = 
$CA ( E ~  +A)+: .  By adding the kinetic term to it as in Edwards and Anderson 
(1976) we get the spin wave energy: 

(4) 

As seen from (2) or (3) the lowest energy mode is a rotation of all the spins towards 
the same direction with wA = 0. 

In spin glasses one might think that in the ground state with h = 0 there are clusters 
of spins that can rotate freely as a whole independent of the surroundings and therefore 
the harmonic approximation breaks down even at T = 0. However, we can prove that 
there are no such clusters. Let us assume that there is such a cluster and consider a 

U A  = [ ( & A  + h ) / 1 ] 1 ' 2 .  



Existence condition for local magnetisation 3601 

spin (at the ith site) on the border of the cluster. One has XI ,,, J,, sin(8, -e,)+ 
Ek J l k  sin(@, - e k )  = 0 for one state of the cluster and E, sin(& -$,)+& 
Jlk sin(& - e k )  = 0 for another state. As 8, - 8, = - CL, for the spins in the cluster one 
gets X k  J,,[-sin(B, - 8 k )  +sin($, - e k ) ]  = 0. Since $, can take arbitrary values one only 
has the solution that Jlk = 0, hence the first assumption is wrong. This proof does not 
deny the existence of the ground state degeneracy. There may be a lot of degenerate 
ground states with finite energy barriers among them. We have no idea how far the 
properties of elementary excitations reflect the properties of degenerate ground states, 
but it is possible and meaningful to investigate the stability of a ground state at T # 0 
against elementary excitations as a necessary condition for it, besides the effects due 
to other causes. 

Now we shall apply the classical Bogoliubov inequality (Mermin 1967) to the 
problem, 

(lAl2) 2 ~BTI([C,  A*1)I2/([C, [e*, XI]) ( 5 )  

where [A,  B ]  is the Poisson bracket and (. . .) the thermal average. Inequality ( 5 )  is 
valid provided that each constituent part in ( 5 )  is finite and the validity is not directly 
related to whether the system is uniform or not. It is convenient to define A and C as 

AA = a, ( A  ) sin CA = C a1 (A )PI. (6) 
I I 

pt is the angular momentum perpendicular to the plane of rotation, which is the 
canonical variable conjugate to Using (1) and (6 )  we get [CA, X] = --E, aI(A)aX/d4,.  
Similarly we obtain 

([CA, [Cf, ,wl> 

= C J I , ( ~ ~ 1 ( ~ ) ~ 2 - ~ l ( A ) a ~ ( A ) ) ( c o s ( 4 ,  -4, +el -e,)>+h c lal(A)12(cos 6) 

E EA(T, h )  + hMA 

1 

(7) 

where 

MA = 1 la, (A )12ml, m, = (cos d l ) .  (8) 
I 

In (8) m, is the local magnetisation. On the right-hand side of (7) one always has 
EA (T, h )  + hMA 3 0 since 

kBT([C*, [CY 211) = (IB 1’) 0 (9) 

holds, where B = [C, %I. 
Performing a similar calculation as above, we obtain 

A I 
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where N is the total number of spins. Substituting (7) and (10) into (5) and summing 
over A and then using (ll),  we get 

for finite N. When obtaining (12) we have kept iz some positive value to prevent any 
of the denominators from falling into zero and to use it as a trigger to break the 
symmetry of the system. 

Let us briefly mention some properties of MA and m, in disordered systems. Since 
those systems have no translational symmetry the a ,@)  are real and thus a , ( A )  (and 
probably m,) varies depending on site i. This means from (8) that MA is not generally 
non-vanishing if m, f 0. However MA should not be confused with kA = X, a,  (A )m,  
which represents the component of mode A in condensation, although there may be 
a possibility that even 6, for general A does not vanish as well as for the lowest 
energy mode. Therefore the MA are not the order parameter itself, but they can be 
considered to indicate roughly the degree of magnitude of the local magnetisations. 

In those systems which have strong and many frustrations, if the system is in an 
ordered state for h = 0, all the m, may not necessarily be positive depending on 
temperature. This property of the m, does not prevent us from proceeding further as 
seen in (12), although one may be able to keep every MA positive if the temperature 
is much lower than the critical point. 

In order to ask for a condition necessary for non-vanishing m, at non-zero tem- 
peratures from (12), let us introduce the density of states for EA(T, h = 0) 

where we have defined the exponent Y of the leading term (the one with the lowest 
exponent) as E + 0. Here we have assumed that p ( E )  is continuous in E from E = 0, 
which is plausible because there is always a lowest energy mode of EA(T, 0) = 0 
corresponding to a rotation of all the spins; if p(E)  has a gap, it follows immediately 
that the system can have a stable ordered state. Using E(T,  h )  = E(T,  0)+ Oih? in 
(12), taking the limit N+CO and replacing M ( E )  by a constant M in the resulting 
integral, we find that the right-hand side has the asymptotic form -ksTM2cYh y/ Y 
as h + 0. Thus if M > 0 we must have 

Y>O (14)  

since otherwise the bound (12) could be violated by letting h + 0. 
It is not clear whether Y depends on temperature or not. First we suppose Y is 

constant. If EA(T, 0) is a continuous function of T, one can then put EA(O, 0) (=U,+’) 
in place of EA (T, 0) in (12) to give Y an expression in terms of spin waves, introducing 
the density of states for spin waves: 

N ( E )  = N -’ s (E - U A  - E (N + CO). 
A 

( 1 5 )  

We thus obtain the condition 

y > l .  16) 

Let us think about the case when EA(T, 0) is discontinuous in T. This discontinuity 
means that correlation functions   COS(#^ - d j  + Oi - 0,)) are discontinuous at some tem- 
perature T,, so that there occurs a first-order phase transition. Even the occurrence 
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of a first-order phase transition does not, however, prevent us from considering our 
present subject and obtaining (16) unless Td = 0. 

Next we show that there is no change in (16) even if Y is supposed to depend on 
temperature. Because Y depends on T, it follows from (14) and (12)  that Y > O  must 
be fulfilled at least below T, or Td for systems which undergo a second- or first-order 
phase transition. Therefore (14) at T = 0, namely (16), gives a necessary condition 
on which a system can have an ordered state with non-vanishing mi at low but non-zero 
temperatures. This statement is not applicable only for the two unusual cases; one 
is Td = 0 and the other is that Y ( T )  increases with rising temperature, which means, 
for instance, that there is a disordered state at low temperatures but there appears 
an ordered state at larger temperatures as found in bond annealed Ising spin systems 
(Kasai and Syoji 1973, Ueno and Oguchi 1975). 

In order that the inequality ( 5 )  be valid, each part in it should be finite. (IAAI2) is 
always finite and RBTI([CA, & ] ) I 2  is finite for T < a). As for the denominator, it is 
required from (7) at T = 0 that the energies of the spin waves should be bounded, 
i.e. wA < 00. 

It should be noted that the condition (16) is invalid for the Heisenberg model 
since in ferromagnetic Heisenberg systems (14) holds but JEk is not a spin wave 
energy. 

3. Application 

We shall apply the above result to some kinds of systems. 

3.1. Ferromagnetic systems 

Let us consider interactions with a general form J ( r )  = Ar-d-u. Then the eigenvalue 
in (3) is given in terms of momenta as 

where j ( k )  is a Fourier transformation of J ( r ) .  In these systems, one can directly 
evaluate Y (or y )  using the following inequality: 

Since f ( 0 )  is maximum and f ( 0 )  ot ao-" - R-" where R is the size of the system and 
a .  the lattice constant, we require U > 0 for wk < a). Accordingly (16) becomes 

d > a  

d > 2  for U 3 2.  

for 2 >U > 0, 

The result for CT 3 2  is in agreement with that of Mermin (1967). We have obtained 
the new result that the ferromagnetic phase is ruled out in d s U for 0 <U < 2. 
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3.2. Spin glass systems 

The problem of the spin waves in these systems is still unsettled both theoretically 
and experimentally (Villain 1980 and references therein). However, the low- 
temperature specific heat has been confirmed by several experiments (for instance, 
Wegner and Keesom 1976) to be linear in temperature. The temperature dependence 
of this quantity can be determined only by the knowledge of the density of states 
without the details for the spin waves if contributions other than that from the spin 
waves can be neglected. Assuming C,,, a T"' for the low-temperature specific heat 
and approximating the spin waves as non-interacting bosons, we get instead of (16) 

ff, >2.  (20 )  

However, no experiments seem to be available which can apply to the planar model. 
On the other hand, there are numerical studies for planar models by some authors. 

Huber er a1 (1979) and Huber and Ching (1980) obtained that the low-frequency 
excitations are propagating modes with a linear dispersion in d = 2 and 3, as already 
predicted by Edwards and Anderson (1976). This means y = 1 for d = 2 and y = 2 for 
d = 3. Their exact calculation of N ( E )  is not available because of the finite-size effects. 
Bray and Moore (1981) obtained Y = 0.0*0.1 for the square lattice and Y = 0.1 * O . l  
for the simple cubic lattice. If these results are roughly right, the spin glass order is 
ruled out in two dimensions but is not clear in three dimensions. 

4. Conclusion and discussion 

We have argued the relation of the low-frequency property of the density of states 
with a necessary condition for generalised ordered phases in which local magnetisations 
exist. The condition requires that y > 1 for the spin wave density of states (15). The 
application of this condition is excluded for the unusual cases. First, the elementary 
excitation energy is infinite; second, as we raise the temperature from T=O, an 
ordered state appears following a disordered state; and lastly, a first-order phase 
transition occurs at T = 0. The last two cases are, however, unlikely to happen at all 
in continuous spin systems. 

The condition (16) can be reduced to (20 )  for the low-temperature specific heat 
in general systems. In ferromagnetic systems with long-range interactions we have a 
new result, (19). 

As seen above, the present method includes the contribution from the spin waves 
but probably neglects the possibility of the contributions from barrier modes as reversal 
of spins inside finite domains (Tholence and Tournier 1977) and transitions between 
quasi-degenerate ground states via thermal activation processes (Fischer 1979) which 
may be important in spin glass systems. However, as long as there exist spin waves 
which have no gap in energy spectra and are largely extended, they must give an 
important contribution at low temperatures. 

Recently, Bray and Moore (1981) showed that the dynamics of vector spin glasses 
at low temperatures is governed by the low-frequency property of the spin wave 
density of states. Hence this property is quite important and it may be possible to 
see if the spin glass order occurs or not by observing the dynamics at low temperatures. 
Stauffer and Binder (1981) observed in Monte Carlo simulations a nearly logarithmic 
decay of the Edwards-Anderson order parameter with time which, however, did not 
show any dependence on both d ( 2  G d G 6) and spin dimensionality n (1 s n s 3). 
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